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Backgrounds

• Traditional U-shape
• Model complexity ↑ =⇒ Bias ↓, Variance ↑
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Backgrounds
Double Descent

• In deep learning,

• Moreover, Belkin et al. (2019) demonstrate that double
descent ubiquitously appears across many non-deep learning
methods such as trees, boosting and even linear regression.
(cited 1000+)
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Contribution

• In Part 1, Curth et al. (2023) show that for non-deep double
descent, there is implicitly more than one complexity axis
along which the parameter count grows

• In Part 2, Curth et al. (2023) propose a generalized measure
for the effective number of parameter (for smoothers)
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Understanding double descent in trees

• P leaf : the maximum allowed number of terminal leaf
nodes

• In experiments of Belkin et al. (2019), the number of model
parameters is initially controlled through P leaf .

• However, P leaf for a single tree cannot be increased past n,
which is when every leaf contains only one instance.

• Pens : the number of different trees grown to full depth,
where each tree will generally be distinct due to the
randomness in features considered for each split.

• When Pens > 1, this is actually an ensemble of trees (i.e. a
random forest without bootstrapping)
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Understanding double descent in trees

• Left : evidence of double descent given by Belkin et al. (2019)
• Center : fixed Pens , error exhibits U-shape
• Right : fixed P leaf , error exhibits L-shape
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Understanding double descent in linear regression

• x1, . . . , xn ∈ Rd : input vectors
• In order to flexibly control the number of model parameters,

Belkin et al. (2019) apply basis expansions using random
Fourier features (RFF).

• Pϕ : the number of raw model parameters

• For p ∈ [Pϕ], ϕp(xi ) = Re
(
exp

√
−1vT

p xi
)

where

vp
iid∼ N

(
0, 1

52 · Id
)
.

• For n × Pϕ random design matrix Φ, obtain
• Least square solution if Pϕ ≤ n
• Min-norm solution if Pϕ > n
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Understanding double descent in linear regression

• Results by Belkin et al. (2019)
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Understanding double descent in linear regression

Proposition 1 (Min-norm least squares as dimensionality reduction.)

For a full rank matrix X ∈ Rn×d with n < d and a vector of targets
y ∈ Rn, the min-norm least squares solution

β̂MN =

{
min
β

∥β∥2
2 : Xβ = y

}
and the least squares solution

β̂SVD = {β : Bβ = y}

using the matrix of basis vectors B ∈ Rn×n, constructed using the
first n right singular vectors of X , are equivalent: i.e.,

xT β̂MN = bT β̂SVD

for all x ∈ Rd and corresponding basis representation b ≡ b(x).
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Understanding double descent in linear regression

• When Pϕ < n, the addition of feature dimensions does
correspond to an increase in fitted model parameters.

• When Pϕ > n, performance gains are better explained as a
linear model of fixed size n being fit to an increasingly rich
basis constructed in an unsupervised step.

• One can consider selecting the top PPC (≤ n) principal
components and fitting a linear model to that basis.

• The number of excess features Pex := Pϕ − PPC is the
number of raw dimensions that only contribute to the creation
of a richer basis.
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Understanding double descent in linear regression

• Left : evidence of double descent given by Belkin et al. (2019)
• Center : fixed Pex , error exhibits U-shape
• Right : fixed PPC , error exhibits L-shape
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Conclusion of part 1

• For non-deep double descent, there is implicitly more than one
complexity axis along which the parameter count grows.
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Rethinking parameter counting

• For train data Dtrain = {(xi , yi )}ni=1 and new input z ∈ X , the
prediction of a smoother is

f̂ (z) = ŝ(z)⊤ytrain,

where ŝ(z) ∈ Rn and ytrain = (y1, . . . , yn)
⊤.

• Previous examples (tree, boosting, linear) are examples of
smoothers.

• Curth et al. (2023) adapt the variance based effective
parameter definition : for a set of new inputs {zj}j∈I0

p0
ŝ ≡ p (I0, ŝ(·)) =

n

|I0|
∑
j∈I0

∥ŝ (zj)∥2
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Rethinking parameter counting
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