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Double Descent

® |n deep learning,
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® Moreover, Belkin et al. (2019) demonstrate that double
descent ubiquitously appears across many non-deep learning

methods such as trees, boosting and even linear regression.
(cited 1000+)

Alicia Curth et al (2023)



Contribution

e In Part 1, Curth et al. (2023) show that for non-deep double
descent, there is implicitly more than one complexity axis
along which the parameter count grows
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® In Part 2, Curth et al. (2023) propose a generalized measure
for the effective number of parameter (for smoothers)
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® Part 1: Revisiting the evidence for double descent in non-deep
ML models
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Understanding double descent in trees

e pleaf . the maximum allowed number of terminal leaf
nodes

® In experiments of Belkin et al. (2019), the number of model
parameters is initially controlled through P’

e However, P for a single tree cannot be increased past n,
which is when every leaf contains only one instance.

e Pe"s . the number of different trees grown to full depth,
where each tree will generally be distinct due to the
randomness in features considered for each split.

® When P > 1, this is actually an ensemble of trees (i.e. a
random forest without bootstrapping)
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Understanding double descent in trees

Double Descent in Trees Error by P/ P fixed Error by P P fixed
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Left : evidence of double descent given by Belkin et al. (2019)
Center : fixed P, error exhibits U-shape

Right : fixed P error exhibits L-shape
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Understanding double descent in linear regression

® xi,...,x, € R? : input vectors

® In order to flexibly control the number of model parameters,
Belkin et al. (2019) apply basis expansions using random
Fourier features (RFF).

e P?% : the number of raw model parameters

® For p € [P?], ¢p(x;) = Re (expr" x’) where

o N (0.4 1)

® For n x P? random design matrix ®, obtain

® |east square solution if P? < n
® Min-norm solution if P® > n
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derstanding double descent in linear regression

® Results by Belkin et al. (2019)
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Understanding double descent in linear regression

Proposition 1 (Min-norm least squares as dimensionality reduction.)

For a full rank matrix X € R™9 with n < d and a vector of targets
y € R”, the min-norm least squares solution

g = {min 1915 : X6 =}
and the least squares solution

B5VP = (B:BB =y}

using the matrix of basis vectors B € R"*", constructed using the
first n right singular vectors of X, are equivalent: i.e.,

xT@MN _ pT gsvp

for all x € RY and corresponding basis representation b = b(x).

A U-turn on Double Descent: Rethinking Parameter Coun
Alicia Curth et al (2023) 11/18




Understanding double descent in linear regression

® When P? < n, the addition of feature dimensions does
correspond to an increase in fitted model parameters.

e When P? > n, performance gains are better explained as a
linear model of fixed size n being fit to an increasingly rich
basis constructed in an unsupervised step.

® One can consider selecting the top P”C (< n) principal
components and fitting a linear model to that basis.

e The number of excess features P& := P% — PPC is the

number of raw dimensions that only contribute to the creation
of a richer basis.
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Understanding double descent in linear regression

Double Descent in Regression Error by PP€ P fixed Error by Pe= PPC fixed
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e Left : evidence of double descent given by Belkin et al. (2019)
e Center : fixed P, error exhibits U-shape
e Right : fixed PPC, error exhibits L-shape
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Conclusion of part 1
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® For non-deep double descent, there is implicitly more than one
complexity axis along which the parameter count grows.
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© Part 2: Rethinking parameter counting through a classical
statistics lens
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Rethinking parameter counting

® For train data D™ = {(x;, y;)}"_; and new input z € X, the
prediction of a smoother is

)?(Z) = §(Z)Tytrain7
where §(z) € R” and ytrain = (y1,-- -, ¥n) |

® Previous examples (tree, boosting, linear) are examples of
smoothers.

e Curth et al. (2023) adapt the variance based effective
parameter definition : for a set of new inputs {z;};cz,

ps = p(I()v Z ||S ZJ

J j€Zo
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Rethinking parameter counting
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